
B+ Tree

 What is a B+ Tree

 Searching

 Insertion

 Deletion

What is a B+ Tree

 Definition and benefits of a B+Tree

1.Definition: A B+tree is a balanced tree in which every

path from the root of the tree to a leaf is of the same

length, and each nonleaf node of the tree has

between [n/2] and [n] children, where n is fixed for a

particular tree. It contains index pages and data

pages. The capacity of a leaf has to be 50% or more.

For example: if n = 4, then the key for each node is

between 2 to 4. The index page will be 4 + 1 = 5.

Example of a B+ tree with four keys (n = 4) looks like

this:

What is a B+ Tree

What is a B+ Tree

 Question: Is this a valid B+ Tree?

C E

A B C D E F G H

What is a B+ Tree

Answer:

1.Both tree in slide 3 and slide 4 are valid; how

you store data in B+ Tree depend on your

algorithm when it is implemented.

2.As long as the number of data in each leaf are

balanced, it doesn’t matter how many data

you stored in the leaves. For example: in the

previous question, the n can be 3 or 4, but

can not be 5 or more than 5.

What is a B+ Tree

 Benefit: Every data structure has it’s benefit to

solve a particular problem over other data

structures. The two main benefits of B+ tree are:

1. Based on it’s definition, it is easy to maintain it’s

balance. For example: Do you have to check your

B+ tree’s balance after you edit it?

No, because all B+ trees are inherently balanced,

which make it easy for us to manipulate the data.

What is a B+ Tree

2.The searching time in a B+ tree is much

shorter than most of other kinds of trees. For

example: To search a data in one million key-

values, a balanced binary requires about 20

block reads, in contrast only 4 block reads is

required in B+ Tree.

(The formula to calculate searching time can

be found in the book. Page 492-493)

Searching

 Since no structure change in a B+ tree during

a searching process, so just compare the key

value with the data in the tree, then give the

result back.

For example: find the value 45, and 15 in

below tree.

Searching

 Result:

1. For the value of 45, not found.

2. For the value of 15, return the position

where the pointer located.

Insertion

 Since insert a value into a B+ tree may cause

the tree unbalance, so rearrange the tree if

needed.

 Example #1: insert 28 into the below tree.

25 28 30

Dose not violates

the 50% rule

Insertion

 Result:

Insertion

 Example #2: insert 70 into below tree

Insertion

 Process: split the tree

50 55 60 65 70

50 55 60 65 70

Violate the

50% rule,

split the

leaf

Insertion

 Result: chose the middle key 60, and place it

in the index page between 50 and 75.

Insertion

The insert algorithm for B+ Tree
Data

Page Full

Index Page

Full

Action

NO NO Place the record in sorted position in the appropriate leaf page

YES NO 1. Split the leaf page

2. Place Middle Key in the index page in sorted order.

3. Left leaf page contains records with keys below the middle key.

4. Right leaf page contains records with keys equal to or greater than the

middle key.

YES YES 1. Split the leaf page.

2. Records with keys < middle key go to the left leaf page.

3. Records with keys >= middle key go to the right leaf page.

Split the index page.

4. Keys < middle key go to the left index page.

5. Keys > middle key go to the right index page.

6. The middle key goes to the next (higher level) index.

IF the next level index page is full, continue splitting the index pages.

Insertion

 Exercise: add a key value 95 to the below

tree.

75 80 85 90 95

25 50 60 75 85
75 80 85 90 95

Violate the

50% rule,

split the leaf.

Insertion

 Result: again put the middle key 60 to the

index page and rearrange the tree.

Deletion

 Same as insertion, the tree has to be rebuild if the

deletion result violate the rule of B+ tree.

 Example #1: delete 70 from the tree

60 65

This is OK.

Deletion

 Result:

Deletion

Example #2: delete 25 from below tree, but 25

appears in the index page.

28 30

But…

This is

OK.

Deletion

 Result: replace 28 in the index page.

Add 28

Deletion

 Example #3: delete 60 from the below tree

65

50 55 65
Violet the

50% rule

Deletion

 Result: delete 60 from the index page and

combine the rest of index pages.

Deletion

 Delete algorithm for B+ trees

Data Page Below Fill

Factor

Index Page Below Fill

Factor

Action

NO NO Delete the record from the leaf page. Arrange

keys in ascending order to fill void. If the key of

the deleted record appears in the index page,

use the next key to replace it.

YES NO Combine the leaf page and its sibling. Change

the index page to reflect the change.

YES YES 1. Combine the leaf page and its sibling.

2. Adjust the index page to reflect the

change.

3. Combine the index page with its sibling.

Continue combining index pages until you

reach a page with the correct fill factor or

you reach the root page.

Conclusion

 For a B+ Tree:

 It is easy to maintain it’s balance.

 The searching time is short than most of

other types of trees.

Reference

 http://babbage.clarku.edu/~achou/cs160/B+Tr

ees/B+Trees.htm

 www.csee.umbc.edu/~pmundur/courses/CMS

C461-05/ch12.ppt

